Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system.

نویسندگان

  • Demetrius D Venable
  • David N Whiteman
  • Monique N Calhoun
  • Afusat O Dirisu
  • Rasheen M Connell
  • Eduardo Landulfo
چکیده

We have investigated a technique that allows for the independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system. This technique utilizes a procedure whereby a light source of known spectral characteristics is scanned across the aperture of the lidar system's telescope and the overall optical efficiency of the system is determined. Direct analysis of the temperature-dependent differential scattering cross sections for vibration and vibration-rotation transitions (convolved with narrowband filters) along with the measured efficiency of the system, leads to a theoretical determination of the water vapor mixing ratio calibration factor. A calibration factor was also obtained experimentally from lidar measurements and radiosonde data. A comparison of the theoretical and experimentally determined values agrees within 5%. We report on the sensitivity of the water vapor mixing ratio calibration factor to uncertainties in parameters that characterize the narrowband transmission filters, the temperature-dependent differential scattering cross section, and the variability of the system efficiency ratios as the lamp is scanned across the aperture of the telescope used in the Howard University Raman Lidar system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observations of Water Vapor Mixing Ratio Profile and Flux in the Tibetan Plateau Based on the Lidar Technique

As a part of the third Tibetan Plateau Experiment of Atmospheric Sciences (TIPEX III) in China, a Raman water vapor, cloud and aerosol lidar and a coherent wind lidar were operated in Naqu (31.48°N, 92.06°E) with a mean elevation of more than 4500 m above MSL in summer of 2014. During the field campaign, the water vapor mixing ratio profiles were obtained and validated by radiosonde observation...

متن کامل

Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere.

A nighttime operating Raman lidar system that is designed for the measurement of high vertical and temporal resolution profiles of the water vapor mixing ratio and the aerosol backscattering ratio is described. The theory of the measurements is presented. Particular attention is given to operational problems that have been solved during the development of the system. Data are presented from Sep...

متن کامل

Examination of the traditional raman lidar technique. II. Evaluating the ratios for water vapor and aerosols.

In a companion paper [Appl. Opt. 42, 2571 (2003)] the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations were examined. New forms of the lidar equation were developed to account for this temperature sensitivity.Here those results are used to derive the temperature-dependent forms of the equations for the water vapor mixing ratio, the aeros...

متن کامل

Raman lidar profiling of aerosols over the central U.S.; diurnal variability and comparisons with the GOCART model

We use profiles of aerosol extinction, water vapor mixing ratio, and relative humidity measured by the ARM SGP Raman lidar in northern Oklahoma to show how the vertical distributions of aerosol extinction and water vapor vary throughout the diurnal cycle. While significant (20-30%) variations in aerosol extinction occurred near the surface as well as aloft, smaller (~10%) variations were observ...

متن کامل

Development of the Hampton University Lidar System and the Realm Lidar Network

Lidar offers a plethora of information on atmospheric aerosols and chemical constituents. However, lidar systems typically work in vacuums, applied to specific applications, such as validation efforts, and with little collaboration with other institutions. In order to alleviate these limitations, the Hampton University (HU) lidar has made steps to join the CREST Lidar Network (originally the RE...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 50 23  شماره 

صفحات  -

تاریخ انتشار 2011